

10-port sector/multi beam antenna, 2x 698-960 sector and 8x 1710-2690 multi beam, 65° sector and 33° 4x multi beam, 5x RET with tilt indicators

- Enhances network capacity through six sectors on high band while maintaining low band coverage layer through three sectors with only three antenna faces
- Optimized radome design leading to market leading wind load performance
- Antenna with integrated pluggable RET and retractable tilt scale indicators

#### **General Specifications**

| Antenna Type                     | Multibeam                                                                        |
|----------------------------------|----------------------------------------------------------------------------------|
| Band                             | Multiband                                                                        |
| Grounding Type                   | RF connector inner conductor and body grounded to reflector and mounting bracket |
| Performance Note                 | Outdoor usage                                                                    |
| Radome Material                  | Fiberglass, UV resistant                                                         |
| Radiator Material                | Copper   Low loss circuit board                                                  |
| Reflector Material               | Aluminum                                                                         |
| RF Connector Interface           | 4.3-10 Female                                                                    |
| RF Connector Location            | Bottom                                                                           |
| RF Connector Quantity, high band | 8                                                                                |
| RF Connector Quantity, mid band  | 0                                                                                |
| RF Connector Quantity, low band  | 2                                                                                |
| RF Connector Quantity, total     | 10                                                                               |

#### Remote Electrical Tilt (RET) Information

| RET Hardware                             | CommRET v2                        |
|------------------------------------------|-----------------------------------|
| RET Interface                            | 8-pin DIN Female   8-pin DIN Male |
| RET Interface, quantity                  | 1 female   1 male                 |
| Input Voltage                            | 10-30 Vdc                         |
| Internal RET                             | High band (4)   Low band (1)      |
| Power Consumption, active state, maximum | 10 W                              |
| Power Consumption, idle state, maximum   | 2 W                               |



# R2VV-6533B-R5-V2

#### Protocol

#### 3GPP/AISG 2.0 (Single RET)

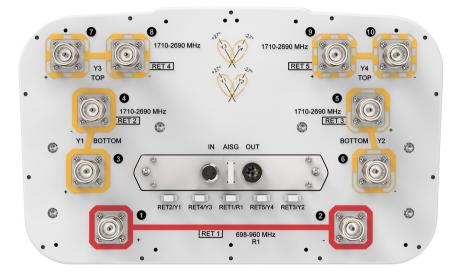
#### Dimensions

| Width                            | 350 mm   13.78 in   |
|----------------------------------|---------------------|
| Depth                            | 208 mm   8.189 in   |
| Length                           | 2100 mm   82.677 in |
| Net Weight, without mounting kit | 29.1 kg   64.154 lb |

### Array Layout

| ¥3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¥4 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| ¥1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¥2 |  |  |  |  |
| l de la constante de la consta |    |  |  |  |  |
| R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |  |  |  |

| Array ID | Frequency (MHz) | RF Connector | RET<br>(SRET) | AISG No. | AISG RET UID                            |
|----------|-----------------|--------------|---------------|----------|-----------------------------------------|
| R1       | 698-960         | 1 - 2        | 1             | AISG1    | CPxxxxxxxxxxxxxxR1                      |
| Y1       | 1710-2690       | 3 - 4        | 2             | AISG1    | CPxxxxxxxxxxxxxxXXXXXXXXXY1             |
| Y2       | 1710-2690       | 5 - 6        | 3             | AISG1    | CPxxxxxxxxxxxxxxXXXXXXXY2               |
| Y3       | 1710-2690       | 7 - 8        | 4             | AISG1    | CPxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXX |
| ¥4       | 1710-2690       | 9 - 10       | 5             | AISG1    | CPxxxxxxxxxxxxxxXXXXXXY4                |


(Sizes of colored boxes are not true depictions of array sizes)

## Port Configuration

Page 2 of 6



# R2VV-6533B-R5-V2



## **Electrical Specifications**

| Impedance                  | 50 ohm                          |
|----------------------------|---------------------------------|
| Operating Frequency Band   | 1710 – 2690 MHz   698 – 960 MHz |
| Polarization               | ±45°                            |
| Total Input Power, maximum | 1,000 W @ 50 °C                 |

# **Electrical Specifications**

| Frequency Band, MHz                  | 698-803 | 824-880 | 880-960 | 1710-1880 | 1920-2170 | 2300-2400 | 2490-2690 |
|--------------------------------------|---------|---------|---------|-----------|-----------|-----------|-----------|
| Gain, dBi                            | 15      | 15      | 15.2    | 17        | 18.2      | 18.5      | 18.4      |
| Beam Centers, Horizontal,<br>degrees |         |         |         | ±27       | ±27       | ±27       | ±27       |
| Beamwidth, Horizontal,<br>degrees    | 71      | 70      | 73      | 34        | 31        | 27        | 25        |
| Beamwidth, Vertical, degrees         | 11      | 9.8     | 9.2     | 8.7       | 7.8       | 7         | 6.5       |
| Beam Tilt, degrees                   | 2-12    | 2-12    | 2-12    | 2-12      | 2-12      | 2-12      | 2-12      |
| USLS (First Lobe), dB                | 20      | 22      | 18      | 16        | 17        | 19        | 17        |
| Front-to-Back Ratio at 180°,<br>dB   | 38      | 32      | 28      | 35        | 34        | 34        | 32        |
| Isolation, Cross Polarization,<br>dB | 25      | 25      | 25      | 25        | 25        | 25        | 25        |

©2025 ANDREW, an Amphenol company. All rights reserved. Amphenol and ANDREW are registered trademarks of Amphenol and/or its affiliates in the U.S. and other countries. All product names, trademarks and registered trademarks are property of their respective owners. Revised: March 12, 2025

Page 3 of 6



# R2VV-6533B-R5-V2

| Isolation, Inter-band, dB                       | 25         | 25         | 25         | 25         | 25         | 25         | 25         |
|-------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| VSWR   Return loss, dB                          | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 |
| PIM, 3rd Order, 2 x 20 W, dBc                   | -150       | -150       | -150       | -150       | -150       | -150       | -150       |
| Input Power per Port at 50°C,<br>maximum, watts | 300        | 300        | 300        | 250        | 250        | 200        | 200        |

### Mechanical Specifications

| Wind Loading @ Velocity, frontal | 355.0 N @ 150 km/h (79.8 lbf @ 150 km/h)  |
|----------------------------------|-------------------------------------------|
| Wind Loading @ Velocity, lateral | 300.0 N @ 150 km/h (67.4 lbf @ 150 km/h)  |
| Wind Loading @ Velocity, maximum | 752.0 N @ 150 km/h (169.1 lbf @ 150 km/h) |
| Wind Loading @ Velocity, rear    | 376.0 N @ 150 km/h (84.5 lbf @ 150 km/h)  |
| Wind Speed, maximum              | 241 km/h (150 mph)                        |

## Packaging and Weights

| Width, packed  | 460 mm   18.11 in   |
|----------------|---------------------|
| Depth, packed  | 350 mm   13.78 in   |
| Length, packed | 2240 mm   88.189 in |
| Weight, gross  | 43.1 kg   95.019 lb |

#### Regulatory Compliance/Certifications

| Agency        | Classification                                                                 |
|---------------|--------------------------------------------------------------------------------|
| CHINA-ROHS    | Below maximum concentration value                                              |
| ISO 9001:2015 | Designed, manufactured and/or distributed under this quality management system |
| REACH-SVHC    | Compliant as per SVHC revision on www.andrew.com/ProductCompliance             |
| ROHS          | Compliant                                                                      |
| UK-ROHS       | Compliant                                                                      |
|               |                                                                                |

#### Included Products

BSAMNT-3

**(e**)

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

### \* Footnotes

**Performance Note** 

Severe environmental conditions may degrade optimum performance

Page 4 of 6



# BSAMNT-3



Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

| Product Classification       |                       |
|------------------------------|-----------------------|
| Product Type                 | Downtilt mounting kit |
| General Specifications       |                       |
| Application                  | Outdoor               |
| Color                        | Silver                |
| Dimensions                   |                       |
| Compatible Diameter, maximum | 115 mm   4.528 in     |
| Compatible Diameter, minimum | 60 mm   2.362 in      |
| Weight, net                  | 6.2 kg   13.669 lb    |
| Material Specifications      |                       |
| Material Type                | Galvanized steel      |
|                              |                       |
| Packaging and Weights        |                       |
| Included                     | Brackets   Hardware   |
| Packaging quantity           | 1                     |
| Weight, gross                | 6.4 kg   14.11 lb     |
|                              |                       |

## Regulatory Compliance/Certifications

| Agency        | Classification                                                                 |
|---------------|--------------------------------------------------------------------------------|
| CE            | Compliant with the relevant CE product directives                              |
| CHINA-ROHS    | Below maximum concentration value                                              |
| ISO 9001:2015 | Designed, manufactured and/or distributed under this quality management system |
| REACH-SVHC    | Compliant as per SVHC revision on www.andrew.com/ProductCompliance             |
| ROHS          | Compliant                                                                      |
| UK-ROHS       | Compliant                                                                      |

ANDREW an Amphenol company

Page 5 of 6





Page 6 of 6

