

20-port sector antenna, 4x694-960 (R1 & R2), 4x1427-2690 (Y3 & Y5) and 12 x 1695-2690 MHz (Y1/Y2/Y4/Y6/Y7/Y8), 65° HPBW, 10xRET

- All Internal RET actuators are connected in "Cascaded SRET" configuration
- Supports re-configurable antenna sharing capability enabling control of the internal RET system using up to two separate RET compatible OEM radios
- Antenna shape optimized for wind load reduction

General Specifications

Antenna Type Sector

Band Multiband

Color Light Gray (RAL 7035)

Grounding TypeRF connector inner conductor and body grounded to reflector and mounting

bracket

Performance Note Outdoor usage

Radome Material Fiberglass, UV resistant

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 0
RF Connector Quantity, mid band 16
RF Connector Quantity, low band 4
RF Connector Quantity, total 20

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal RET Low band (2) | Mid band (8)

Power Consumption, active state, maximum $8~\mathrm{W}$ Power Consumption, idle state, maximum $1~\mathrm{W}$

Protocol 3GPP/AISG 2.0 (Single RET)

Page 1 of 5

Dimensions

Width 498 mm | 19.606 in

Depth 197 mm | 7.756 in

Length 2688 mm | 105.827 in

Net Weight, antenna only 46.1 kg | 101.633 lb

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	AISG RET UID
R1	694-960	1 - 2	1	AISG1	CPxxxxxxxxxxxxxxXR1
R2	694-960	3 - 4	2	AISG1	CPxxxxxxxxxxxxxxR2
Y3	1427-2690	5 - 6	3	AISG1	CPxxxxxxxxxxxxxXY3
Y5	1427-2690	7 - 8	4	AISG1	CPxxxxxxxxxxxxxY5
Y1	1695-2690	9 - 10	5	AISG1	CPxxxxxxxxxxxxxY1
Y2	1695-2690	11 - 12	6	AISG1	CPxxxxxxxxxxxxxY2
Y4	1695-2690	13 - 14	7	AISG1	CPxxxxxxxxxxxx4
Y6	1695-2690	15 - 16	8	AISG1	CPxxxxxxxxxxxxXY6
Y7	1695-2690	17 - 18	9	AISG1	CPxxxxxxxxxxxxxY7
Y8	1695-2690	19 - 20	10	AISG1	CPxxxxxxxxxxxxxXY8

(Sizes of colored boxes are not true depictions of array sizes

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1427 – 2690 MHz | 1695 – 2690 MHz | 694 – 960 MHz

ANDREW® an Amphenol company

Polarization ±45°

Total Input Power, maximum $900~\mathrm{W} \ @ \ 50~\mathrm{^{\circ}C}$

Electrical Specifications

	R1,R2	R1,R2	R1,R2	Y1,Y2,Y4,Y6,Y7,Y8
Frequency Band, MHz	698-806	790-896	890-960	1695-1990
RF Port	1,2,3,4	1,2,3,4	1,2,3,4	9 to 20
Gain at Mid Tilt, dBi	16.2	16.3	16.3	16.4
Beamwidth, Horizontal, degrees	67	62	63	70
Beamwidth, Vertical, degrees	8.5	7.6	7	7.3
Beam Tilt, degrees	2-13	2-13	2-13	2-12
USLS (First Lobe), dB	19	20	24	16
Front-to-Back Ratio at 180°, dB	35	31	31	34
Front-to-Back Total Power at 180° ± 30°, dB	23	22	22	29
CPR at Boresight, dB	31	24	24	23
CPR at Sector, dB	10	7	8	8
Isolation, Cross Polarization, dB	28	28	28	25
Isolation, Inter-band, dB	28	28	28	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	250	250	250	200

Electrical Specifications

	Y1,Y2,Y4,Y6,Y7,Y8	Y1,Y2,Y4,Y6,Y7,Y8	Y1,Y2,Y4,Y6,Y7,Y8	Y3,Y5
Frequency Band, MHz	1920-2300	2300-2500	2490-2690	1427-1518
RF Port	9 to 20	9 to 20	9 to 20	5,6,7,8
Gain at Mid Tilt, dBi	17.3	17.9	18.1	15.3
Beamwidth, Horizontal, degrees	62	56	56	66
Beamwidth, Vertical, degrees	6.5	5.7	5.3	9.2
Beam Tilt, degrees	2-12	2-12	2-12	2-12
USLS (First Lobe), dB	17	20	21	17
Front-to-Back Ratio at 180°, dB	33	31	31	34
Front-to-Back Total Power at 180° ± 30°, dB	28	27	27	28

CPR at Boresight, dB	22	20	20	22
CPR at Sector, dB	6	6	4	9
Isolation, Cross Polarization, dB	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	200	200	200	200

Electrical Specifications

	Y3,Y5	Y3,Y5	Y3,Y5	Y3,Y5
Frequency Band, MHz	1695-1990	1920-2300	2300-2500	2490-2690
RF Port	5,6,7,8	5,6,7,8	5,6,7,8	5,6,7,8
Gain at Mid Tilt, dBi	16.7	17.4	18	17.9
Beamwidth, Horizontal, degrees	62	55	52	53
Beamwidth, Vertical, degrees	7.5	6.8	6	5.5
Beam Tilt, degrees	2-12	2-12	2-12	2-12
USLS (First Lobe), dB	16	16	16	17
Front-to-Back Ratio at 180°, dB	38	37	34	34
Front-to-Back Total Power at 180° ± 30°, dB	32	31	29	28
CPR at Boresight, dB	21	21	25	22
CPR at Sector, dB	8	5	6	2
Isolation, Cross Polarization, dB	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	200	200	200	200

Mechanical Specifications

Wind Loading @ Velocity, frontal	914.0 N @ 150 km/h (205.5 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	239.0 N @ 150 km/h (53.7 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	1,215.0 N @ 150 km/h (273.1 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	629.0 N @ 150 km/h (141.4 lbf @ 150 km/h)
Wind Speed, maximum	241 km/h (150 mph)

Packaging and Weights

 Width, packed
 565 mm | 22.244 in

 Depth, packed
 318 mm | 12.52 in

 Length, packed
 2809 mm | 110.591 in

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Below maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

REACH-SVHC Compliant as per SVHC revision on www.andrew.com/ProductCompliance

ROHS Compliant UK-ROHS Compliant

Included Products

BSAMNT-2F – Mounting bracket for cylindrical pipe installations (60-115mm pipe diameter) for fix mechanical tilt applications.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

